Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Feng Xu, Wei-Xiao Hu,* Wei Zhou and Chun-Nian Xia

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å R factor = 0.076 wR factor = 0.202 Data-to-parameter ratio = 7.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Amino-2,5-bis(4-methoxybenzyl)-1,3,4-triazole

In the title compound, $C_{18}H_{20}N_4O_2$, the triazole ring is twisted with respect to the two benzene rings with dihedral angles of 71.5 (3) and 67.3 (3)°. N-H···N hydrogen bonding occurs between neighboring molecules.

Received 20 July 2006 Accepted 28 July 2006

Comment

1,3,4-Triazole derivatives have extensive biological activity, including antibacterial and herbicidal action *via* effects on DNA and related molecules (Kahn & Martinez, 1998). Antiviral properties have also been found for some derivatives of 1-amino-1,3,4-triazole–ribofuranoside (Zakharieva *et al.*, 1994). We recently obtained the title triazole compound, (I), during the preparation of *s*-tetrazine derivatives.

The molecular structure of (I) is illustrated in Fig. 1. The molecule has a pseudo-twofold axis. The triazole ring plane is twisted with respect to the benzene rings, the dihedral angles being 71.5 (3) (C8-benzene ring) and 67.3 (3)° (C16-benzene ring). $N-H\cdots N$ hydrogen bonding occurs between neighboring molecules (Table 1).

Figure 1

The molecular structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

All rights reserved

© 2006 International Union of Crystallography

Experimental

With sulfur (1.0 g) as a catalyst, 85% hydrazine hydrate (10 ml, 170 mmol) was dropped into *p*-methoxybenzyl cyanide (50 mmol) in anhydrous ethanol (15 ml) at 295 K. After refluxing for 3 h, the mixture was cooled to room temperature and the resulting solid product was filtered off. The solid product was dissolved in dichloromethane, affording single crystals of (I) by evaporation.

Z = 4

Crystal data

$C_{18}H_{20}N_4O_2$
$M_r = 324.38$
Monoclinic, Cc
a = 31.906 (16) Å
b = 6.130(3) Å
c = 8.726 (4) Å
$\beta = 98.428 \ (7)^{\circ}$
$V = 1688.3 (15) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 3808 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.076$ $wR(F^2) = 0.202$ S = 0.961734 reflections 220 parameters H-atom parameters constrained $D_x = 1.276 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K Prism, colorless $0.10 \times 0.08 \times 0.05 \text{ mm}$

1734 independent reflections 1100 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.078$ $\theta_{\text{max}} = 26.5^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1234P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.27 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.021 (5)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N6-H6A···N4 ⁱ	0.86	2.19	2.968 (7)	150
Symmetry code: (i) x.	v = 1, z			

Symmetry code: (1) x, y - 1, z.

Methyl H atoms were placed in calculated positions, with C–H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed in calculated positions, with C–H = 0.93 Å and N–H = 0.86 Å, and refined in riding mode, with $U_{iso}(H) = 1.2U_{eq}(C,N)$. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We are grateful to the National Natural and Scientific Foundation (grant No. 20272053) for financial support.

References

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Kahn, O. & Martinez, C. J. (1998). Science, 279, 44-48.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Zakharieva, R. D., Galabov, A. S. & Nikolova, N. (1994). Bioorg. Med. Chem. Lett. 4, 2831–2832.